Rational Divisors in Rational Divisor Classes

نویسندگان

  • Nils Bruin
  • E. Victor Flynn
چکیده

We discuss the situation where a curve C, defined over a number field K, has a known K-rational divisor class of degree 1, and consider whether this class contains an actual K-rational divisor. When C has points everywhere locally, the local to global principle of the Brauer group gives the existence of such a divisor. In this situation, we give an alternative, more down to earth, approach, which indicates how to compute this divisor in certain situations. We also discuss examples where C does not have points everywhere locally, and where no such K-rational divisor is contained in the K-rational divisor class.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical rational equivalence of intersections of divisors

We consider the operation of intersecting with a locally principal Cartier divisor (i.e., a Cartier divisor which is principal on some neighborhood of its support). We describe this operation explicitly on the level of cycles and rational equivalences and as a corollary obtain a formula for rational equivalence between intersections of two locally principal Cartier divisors. Such canonical rati...

متن کامل

Ample Divisors on Moduli Spaces of Pointed Rational Curves

We introduce a new technique for proving positivity of certain divisor classes on M0,n and its weighted variants M0,A. Our methods give a complete description of the models arising in the Hassett’s log minimal model program for M0,n.

متن کامل

K-Theory and Intersection Theory

2.1 Dimension and codimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Dimension relative to a base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Cartier divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Real and imaginary quadratic representations of hyperelliptic function fields

A hyperelliptic function field can be always be represented as a real quadratic extension of the rational function field. If at least one of the rational prime divisors is rational over the field of constants, then it also can be represented as an imaginary quadratic extension of the rational function field. The arithmetic in the divisor class group can be realized in the second case by Cantor’...

متن کامل

On Jacobian group arithmetic for typical divisors on curves

In a previous joint article with F. Abu Salem, we gave efficient algorithms for Jacobian group arithmetic of “typical” divisor classes on C3,4 curves, improving on similar results by other authors. At that time, we could only state that a generic divisor was typical, and hence unlikely to be encountered if one implemented these algorithms over a very large finite field. This article pins down a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004